Gunssian Elimination Solve linear systems for the pivot variables in term of free variable () write down orronnent matrix @ Finel Reduced Echelon form O write down equations corresponded to reduced Echelon form @ Express pivot variables in terms of free vomiable eg.

 $\begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 1 & -3 \end{bmatrix}$

 $\begin{array}{rrrrr} -2x_3 & +3x_4 & +5x_5 & = -4 \\ x_2 & -2x_3 & +2x_4 & +x_5 & = -3 \end{array}$ Express pivot variables in terms of free variables

RREF of the augmented matrix:

Write down the equations corresponding to the

Free variable: Can be any val you like

Consistent: have solution

Theorem P: A linear system is consistent if and only if an echelon form of the argument matrix has no now of the form [0.-- 0] b], where b is non-zoro. if linen System consistent, then, the linear system has O A unique solution (infinitely many solution.

es.
$$\begin{bmatrix} 3 & 4 \\ 6 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix}$$

No solution becase dure is a $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ in PREF
Linear Combinentson
Prime of the Bis
Prime

Linear Combination, linear combination of man motion
$$A_1, A_2 \cdots A_P$$
, with
Coefficients $C_1, C_2 \cdots C_P$ is define as:
 $C_1A_1 + C_2A_2 + \cdots + C_PA_P$
Span. Set of Linear combination for $A_1, B_2 \cdots A_P$
 R^m . Set of all colume vector
 $A_2 \cdots A_1 = \begin{bmatrix} i_2 \\ j_2 \end{bmatrix}, a_2 = \begin{bmatrix} i_4 \\ j_4 \end{bmatrix}$ and $b = \begin{bmatrix} i_2 \\ j_3 \end{bmatrix}, is a a longer combination
for a_1 and a_2 ?
 $Y_1 \begin{bmatrix} i_3 \\ j_3 \end{bmatrix} + Y_2 \begin{bmatrix} i_4 \\ j_4 \end{bmatrix} = \begin{bmatrix} i_3 \\ j_3 \end{bmatrix}$
 $Y_1 \begin{bmatrix} i_3 \\ j_3 \end{bmatrix} + Y_2 \begin{bmatrix} i_4 \\ j_4 \end{bmatrix} = \begin{bmatrix} i_3 \\ j_4 \end{bmatrix}$
 $Y_1 + I + Y_2 = S$
 $Y_1 + I + Y_2 = S$
 $Z = \begin{bmatrix} i_4 \\ j_4 \end{bmatrix} = \begin{bmatrix} i_7 \\ j_7 \end{bmatrix}$
 $R_3 + R_3 - R_2$
 $Z = \begin{bmatrix} i_2 \\ j_4 \end{bmatrix} = \begin{bmatrix} i_7 \\ j_7 \end{bmatrix}$
 $R_3 + R_3 - R_2$
 $Z = \begin{bmatrix} i_2 \\ j_4 \end{bmatrix} = \begin{bmatrix} i_7 \\ j_7 \end{bmatrix}$
 $R_3 + R_3 - R_2$
 $Z = \begin{bmatrix} i_2 \\ j_7 \\ j_7 \end{bmatrix}$
 $R_3 + R_3 - R_2$
 $Z = \begin{bmatrix} i_2 \\ j_7 \\ j_7 \end{bmatrix}$
 $R_3 + R_3 - R_2$
 $Z = \begin{bmatrix} i_2 \\ j_7 \\ j_7 \end{bmatrix}$
 $R_3 + R_3 - R_2$
 $Z = \begin{bmatrix} i_2 \\ j_7 \\ j_7 \end{bmatrix}$$

Matrix multiplication

• Ax is only defined if the # of entions of
$$x = #q$$
 columns of A .
 $A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} B = \begin{bmatrix} 0 & 2 \\ 3 & 5 \end{bmatrix} X = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, determ Ax and Bx$
 $Ax = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2\begin{bmatrix} 2 \\ 1 \end{bmatrix} + 3\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$
 $Bx = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \end{bmatrix} + \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \\ 3 \end{bmatrix}$

egz. Consider the followy vector

$$\chi_1 [z] + \eta_2 [4] = [z]$$

Find a 2×2 matrix A such that (x1, x2)13 a solution to the above equation if and only if

$$A[\eta_2] = [2].$$

$$A = \begin{bmatrix} 2 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 7 & 2 \end{bmatrix} =$$

Theorem]: let A be [a, - and be a min-morris and bin R. Theorem, the followy are equivalent

•
$$(\chi_{1},\chi_{2},-\chi_{n})$$
 is the solution for the vector equiling χ_{1} of the χ_{1} or χ_{n} on $-b$
• $\left[\chi_{1},\chi_{2},\cdots,\chi_{n}\right]$ is a solution to the matrix equation $A_{X}=b$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$ is the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$ is the system $[A \mid b]$.
• $(\chi_{1},\chi_{2},\cdots,\chi_{n})$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the solution of the system $[A \mid b]$ is the

Mortrix Multiplication
Let A be an Maximum matrix and let B= Cbi ... bp] be an
$$n \times p^{-1}$$

motivix. We define
 $AB = (A + a + b)$
 $A = \begin{bmatrix} 4 & -2 \\ 2 & -5 \end{bmatrix} B = \begin{bmatrix} 2 & -3 \\ 6 & -7 \end{bmatrix} , A \cdot B ?$
 $Ab_1 = \begin{bmatrix} 4 & -2 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -24 \\ -24 \end{bmatrix}$
 $Ab_2 : \begin{bmatrix} 2 & -2 \\ 3 & -5 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ -7 \end{bmatrix} = \begin{bmatrix} 2b \\ -7 \end{bmatrix}$
 $Ab_2 : \begin{bmatrix} 2 & -2 \\ 3 & -5 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ -24 \end{bmatrix} = \begin{bmatrix} 2b \\ -24 \end{bmatrix}$
 $Ab_2 : \begin{bmatrix} 2 & -2 \\ -24 \end{bmatrix} \cdot \begin{bmatrix} -24 & 26 \\ -24 \end{bmatrix}$
 $Ab_3 : S = \begin{bmatrix} -4 & 6 \\ -24 & 26 \\ -24 \end{bmatrix}$
 $Ab_4 : S = linear combination of the columns of A from the convesponding columns of B
PS. C is $4\pi 3$ and D is $3\pi 2$. are CD and DC define?
Must is their Size ?$

CD is define. 4x2. DC not define

$$A(B_X) = (AB) \times$$

Row-Column Rule
Let A be the mxn and B be nxp such that

$$A = \begin{bmatrix} R_{I} \\ \vdots \\ R_{m} \end{bmatrix}$$
, and $B = EC_{I} \cdots CpJ$.
Then, $AB = \begin{bmatrix} R_{I}C_{I} \cdots R_{I}C_{P} \\ R_{n}C_{I} \cdots R_{n}C_{P} \end{bmatrix}$ and $(AB)_{IJ} = R_{I}C_{J} = a_{IJ}b_{IJ} + a_{I2}b_{IJ}$

• + ··· ain bus AB= (iRit ··· + CnRn 13. A=[-101], B= [01] Compute AB if date. $AB = \begin{bmatrix} 4+0+24 & 2(-3)+3\cdot 1+6\cdot (-7) \\ (+)(-2)+0+4 & 3+0-7 \end{bmatrix} = \begin{bmatrix} 28 & -45 \\ 2 & -45 \end{bmatrix}$