Defination
linear Equation: $a_{1} x_{1}+\cdots+a_{n} x_{n}=b$
where $a_{1}, a_{2} \cdots$ are numbers and $x_{1}-x_{n}$ are variables
eg.

$$
\begin{aligned}
& 4 x_{1}-5 x_{2}+2=x_{1} \quad \Leftrightarrow 3 x_{1}-5 x_{2}=-2 \\
& x_{2}=2\left(\sqrt{6}-x_{1}\right)+x_{3} \quad \Leftrightarrow 2 x_{1}+x_{2}-x_{3}=2 \sqrt{3} \\
& 4 x_{1}-6 x_{2}=x_{1} x_{2} \\
& x_{2}=2 \sqrt{x_{1}}-7
\end{aligned}
$$

linear System: Collection of one or more linear equations
Solution: linear system's solution is a list $\left(S_{1}, S_{2}, S_{3} \cdots S_{n}\right)$
g.
(I) $\quad x_{1}+x_{2}=1$
(II) $-x_{1}+x_{2}=0$ solution?
(1) Add I ana LI: $2 x_{2}=1 \Rightarrow x_{2}=1 / 2$
\leftrightarrow plug into I $\quad x_{1}+1 / 2=1 \Rightarrow x_{1}=1 / 2$
(3) Thus $\left(x_{1}, x_{2}\right)=(1 / 2,1 / 2)$ is the only solution.

Not every system have only one solution. es.

$$
\begin{aligned}
x_{1}-2 x_{2} & =-3(111) \\
2 x_{1}-4 x_{2} & =8(1 \mathrm{~V})
\end{aligned}
$$

(1) Multiply 1 by $2 \Rightarrow 2 x_{1}-472=-6$
(2) Subsiract (t) from $C 2 l$)
$\Rightarrow 0=14$ which is alweysfalso.
\Rightarrow No solution exist
y.

$$
\begin{aligned}
& x_{1}+x_{2}=3 \\
& -2 x_{1}-2 x_{2}=-6 \quad(v 1)
\end{aligned}
$$

Multiply v by $2 \Rightarrow 2 x_{1}+2 x_{2}=6$
v and $v 1$ have same value just set $x_{2}:=3-x_{1}$ equation has inf solution

Summary: A linear system has either: $\left\{\begin{array}{l}\text { One unique solution } \\ \text { No solution }\end{array}\right.$ No Solution inf many solution
equivalent: Two linemen systems are equivalent is they have the same solution set

Matrix and linear System
Defination: A $m \times n$ matrix is a rectangular array of number with m rows and n columns.
ley. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right],[1+\sqrt{5}]$
Entries : $A=\left[\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22} \\ \vdots & \vdots \\ a_{m 1} & a_{m 2}\end{array}\right] \quad a_{i j}$: i row j colure

Elementary row operation
OReplacement : Add a multiple of one row to another now.

$$
R_{i} \rightarrow R_{i}+C R_{j} \text {, where } i \neq j
$$

E) Interchange: Interchange two now $3: R_{i} \Leftrightarrow R_{j}$
(3) Scaling: Multiply all entries in a now by a nonzero constant: $R_{i} \rightarrow C R_{i}$, where $C \neq 0$
eg. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \xrightarrow[R_{2} \rightarrow R_{2}+3 R_{1}]{ }\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$
Replacement

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2 & 1
\end{array}\right] \xrightarrow[\substack{R_{1} \in \supset R_{3} \\
\text { Interchge }}]{\longrightarrow}\left[\begin{array}{ll}
2 & 3 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \xrightarrow[R_{2} \rightarrow 3 R_{2}]{\longrightarrow}\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
$$

is. Consider a row operation $R_{3} \rightarrow R_{3}+3 R_{1}$, Is there any operation reverse it?

$$
R_{3} \rightarrow R_{3}-3 R_{1}
$$

Replacing
Summary: Even Row operation is reversible, like:
Scaling: $R_{2} \rightarrow c R_{2}: R_{2} \rightarrow 1 / c R_{2}$.
Intenelye: $R_{1} \Leftrightarrow R_{2}: R_{1} \Leftrightarrow R_{2}$

Row equivalent: Two matrix are now equivalent if one riatox can be transform into the other matrix by a sequence of elementary row operation

Theorem 1: If the argumented matrix of two linear syst tans are row equivalent, then the two systems hare the same solution set
es. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{3}+3 R_{1}]{ }\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1\end{array}\right] \underset{R_{3} \rightarrow R_{3}-3 R_{1}}{ }\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right]$

Row Equivalent

Echelon form (or row echelon form)

Define: A matrix is in Echelon form if:
(1) All non zero nous (rows with at least one nonzero learnt) are above any rows of all zeros.
(7) The leading entry (the first nonzero number from (fr) of a nonzero now is aluegs strictly to the right of the leading entry of the vow above it.
 \in nonzero row I.V Leading Entry 32_{2} Right $2, V$
\Rightarrow True

$$
\frac{1 \cdot V}{2 \cdot x} \quad \Rightarrow \text { False }
$$

1.V
2.V $\quad \Rightarrow$ True

$$
\left[\begin{array}{lll}
0 & 1 & 3 \\
0 & 0 & \left(\frac{1}{2}\right. \\
0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& 1 . V \\
& 2 . V
\end{aligned} \Rightarrow \text { True }
$$

Row Reduced echelon Form (or reduced echelon form or RREF)
Requir: (1) Is echelon Form
(2) The leading entry in each non-zero now is 1
(3) Each leading Entry is the only non-zero entry
in the colum a
y

(1) V
(2) V True
(3) V

(1) V
(2) $V=$ False
(3) X

Theorem l Each matrix is row equivalent to one and only one matrix in reduced echelon form
def: We say that matrix B BRREF of matrix A if A and B ore row-equivalert and B is in REF.
es. Find RREF of the matrix:

$$
\begin{aligned}
& R_{2}=\left[\begin{array}{cccccc}
3 & -9 & 12 & -9 & 6 & 15 \\
3 & -7 & 8 & -5 & 8 & 9
\end{array}\right] \\
& (1) R_{2}-R_{1} \Rightarrow\left[\begin{array}{cccccc}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 2 & -4 & 4 & 2 & -6
\end{array}\right] \\
& (2) R_{1}=R_{1} \cdot 1 / 3 \\
& R_{2}=R_{2} \cdot 1 / 2
\end{aligned} \Rightarrow\left[\begin{array}{cccccc}
1 & -3 & 4 & 33 & 2 & 5 \\
0 & 1 & -2 & 2 & 1 & -3
\end{array}\right] \quad .
$$

(3) $R_{1}=R_{1}+3 R_{2} \Rightarrow\left[\begin{array}{cccccc}1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 1 & -3\end{array}\right]$

Pivot position: the position of the leading entry in an echelon form of a matrix. the pivot column is the column that contains a pivot position
g.

Basic variable (on pivot variable): is a variable that corresponds to a piavor column in the coefficient matrix of a linear system. A free variable that is not a pivot variable.
g

$$
\begin{aligned}
& {\left[\begin{array}{l|l|c|c|ccc}
1 & 6 & 0 & 3 & 0 \\
0 & 0 & 1 & -8 & 0 \\
0 & 0 & 0 & 0 & 1 & 7 \\
5
\end{array}\right] \begin{array}{l}
x_{1}, x_{3}, x_{5} \text { are basic } \\
\\
\\
x_{2}, x_{4} \text { are friable }
\end{array}} \\
& x_{1} x_{2} x_{3} x_{4} x_{5} \\
& \text { variable }
\end{aligned}
$$

