Chemical Quantities
Mole

$$
6.022 \times 10^{23}=1 \text { mole }
$$

eg. $6.022 \times 10^{23} \mathrm{CO}+2\left(6.022 \times 10^{23}\right) \mathrm{H}_{2} \rightarrow 6.022 \times 10^{23} \mathrm{CH}_{3} \mathrm{OH}-1$

$$
\left|\mathrm{mol} \mathrm{CO}+2 \mathrm{~mol} \mathrm{H}_{2} \rightarrow\right| \mathrm{mol} \mathrm{CH} 3 \mathrm{O} \mid-1
$$

Mass

$$
\begin{aligned}
& 26.98 \mathrm{~A} \\
& \text { A }
\end{aligned} \begin{aligned}
& \text { Represent } 26.98 \mathrm{~g} / 1 \mathrm{~mol} \mathrm{~A} \mid \\
& \text { Average Atomic Mans }
\end{aligned}
$$

eg. $2 \mathrm{Al}+3 \mathrm{I}_{2} \rightarrow 2 \mathrm{Al\mid} I_{3}$
Now we got $35 \mathrm{~g} \mathrm{A1}$, how much I_{2} we need?
$2 \mathrm{~mol} A 1$ NEED $3 \mathrm{~mol} I_{2}$.
From table, we get $1 \mathrm{~mol} A \mid=26.98 \mathrm{~g}$

$$
\begin{aligned}
& \Rightarrow 35 / 26.98=1.3 \mathrm{~mol} A \mid \Leftrightarrow 3 / 2 \cdot 1.3=1.95 \mathrm{~mol} I_{2} \\
& 253.8 \quad \text { Gram of } I_{2}=253.81 .95=495 \mathrm{~g} I_{2}
\end{aligned}
$$

Stoichiometry: Use chemical equation to calculate the relative masses of reactant
Limiting Reacting
The reactant left after reaction

- Also called limiting reagent
eg. 25 kg of nitrogen gas and 5 kg of hydrogen gas are mix together to form ammonia. Calculate the mass of ammonia produced

$$
\begin{array}{cc}
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2\left(\mathrm{NH}_{3}\right. \\
\mathrm{N}_{2} 25 \mathrm{~kg} & \left.2.5 \times 10^{4} / 28 \mathrm{~mol}=8.9 \times 10^{2} \mathrm{~ms}\right) \\
\mathrm{H}_{2} 5 \mathrm{~kg} & 5 \times 10^{3} / \mathrm{mol}=2.5 \times 10^{3} \mathrm{~mol}
\end{array}
$$

20. N_{2} ran out need $2.67 \times 10^{3} \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}$. \downarrow
N_{2} is limiting.
For $2.5 \times 10^{3} \mathrm{~mol} \mathrm{~Hz}$, we get $2 / 325 \times 1 \mathrm{~m}^{3}$

$$
\begin{aligned}
& =1.67 \times 10^{3} \mathrm{~mol} \\
\mathrm{NH}_{3} & =14+3=179 / \mathrm{mv}) \\
& =1.67 \times 10^{3} .17=28.39 \mathrm{~kg}
\end{aligned}
$$

percent yield
Theoretical Yield: Maximum Amon of possible yield Actual Yield.

$$
\text { peart yield }=\frac{\text { Actual }}{\text { Theoritial }} \times 100 \%
$$

Energy

- The ability to do work or produce heat
- \angle Potential
- Conservation of energy

Temperature and heat
heat: flow of energy due to a terperatue difference

$$
T_{\text {Final }}=\frac{T_{\text {hot init }}+T_{\text {cold init }}}{2}
$$

when the mass of hot and cold are equal
Exothermic and Eadothermiz
Exothermic: out of energy
Endothermic: energy flow inside.
Thermodynamics
The study of energy

$$
\Delta E=q+\omega
$$

where q =heat $w=$ work.

Calorie: Amount of energy requried to raise temperate of one gram of water by one Celsius degree.

$$
\text { - calorie }=4.184 \text { joules }
$$

eg. energy (hear) in joules need to take 7.4 g water from $29^{\circ} \mathrm{C}$ to $46^{\circ} \mathrm{C}$.
\mid cal $=$ heat \lg water by $1{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
\Rightarrow & 29^{\circ} \mathrm{C}-46^{\circ} \mathrm{C} \text { of } 7.4 g \text { water need: } \\
& (46-29) \cdot 7.4
\end{aligned}
$$

And to joule:

$$
(46.29) \cdot 7.4 \cdot 4.184=526.3472\}
$$

heat capacity
The amount of energy need to change temperature of one gram of a substance by one Celsius degree.

$$
\text { eg. Water }=4.184 \mathrm{~J}
$$

I 2. Known that iron's heat capacity $=0.45 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$ Ask energy requited to heat 1.3 g from $25^{\circ} \mathrm{C}$ to $46^{\circ} \mathrm{C}$.

$$
0.45 \cdot 1 \cdot 3 \cdot(46-25)=12.285 \mathrm{~J}
$$

In Celsing: $12.285 / 4.184=2.936 \mathrm{cal}$

$$
Q=S \cdot m \cdot o T
$$

Q: engr (J)
S : heat capacity
m : mass of the sample in gram
$O T$ = charge in temperarme
ley. 1.6 g need 5.8$]$ to change T from $23^{\circ} \mathrm{C}-41^{\circ} \mathrm{C}$. 2S it gold?

$$
\begin{aligned}
& 5.83 /\left(1.6 \mathrm{~g} \cdot(41-23)=S=0.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right. \\
& \because \text { S for gold }=0.13 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} .
\end{aligned}
$$

$$
\Rightarrow \text { Not gold. }
$$

Thermachenisty (Enthalpy)
Enthalpy $(0 H)=$ heat
under constant pressure and condition
eg. When mole of $\left(\mathrm{CH}_{4}\right)$ burned. 890 kJ of energy released as heat. Get oH which 5.8 g sample of methane is burned.

$$
\frac{\Delta Q_{1}}{\Delta Q_{2}}=\frac{m_{1}}{m_{2}} \Rightarrow \frac{890}{\Delta Q_{2}}
$$

mile mass of $\mathrm{CH}_{4}=12+4=16 \mathrm{~g} / \mathrm{mol}$
$\Rightarrow m_{1}=16 \mathrm{~g}$ when CH_{4} have Imole.

$$
\Rightarrow \frac{16}{5.8}=\frac{890}{\Delta Q_{2}} \Rightarrow Q_{2}=322.625 \mathrm{~J}=01 \mathrm{H}
$$

Hess's Law
enthalpy can be stated as a function
eg.

$$
\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{1}=68 \mathrm{~kJ},
$$

or

$$
\begin{array}{ll}
\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{0} & \rightarrow \Delta \mathrm{H}_{2}=180 \mathrm{~kJ} \\
2 \mathrm{NO}_{\mathrm{O}} \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} & \rightarrow \Delta \mathrm{H}_{3}=-112 \mathrm{~kg} \\
\mathrm{~N}_{2}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} & \Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}=68 \mathrm{~kJ}
\end{array}
$$

Character of Enthalpy chonge

1. Reaction Revenged, Sign of oH reversed
2. Magnitude of ΔH proportional to the quantities of reactants and products in reaction
es. $\mathrm{Xe}(\mathrm{g})+2 \mathrm{Fe} \rightarrow \mathrm{XeF}_{4} \quad \Delta H=-251 \mathrm{~kJ}$ exp

$$
\begin{array}{ll}
\mathrm{XeF}_{4} \rightarrow \mathrm{Xe}+2 \mathrm{~F}_{2} & \Delta H=+251 \mathrm{~kJ} \text { end } \\
2 \mathrm{Xe}+4 \mathrm{~F}_{2} \rightarrow 2 \mathrm{XeF}_{4} & \Delta H=502 \mathrm{~kg}
\end{array}
$$

eg. Two form of carbon are graphite and diamond. Combustion of graphite e $(-394 \mathrm{~kJ})$ $\mathrm{mol})$ and dimond $(-396 \mathrm{~kJ}) \mathrm{mol})$, calculate ΔH for the conversion of graphite to diamend

Cgraphite \rightarrow (diamond.
(1) $\mathrm{CP}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \uparrow \quad \Delta H=-394 \mathrm{~kg}$
(2) $\left.\mathrm{C}_{(\mathrm{D}}\right)+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \hat{i} . \quad \Delta H=-392 \mathrm{~kg}$

Acudy to porperty:

$$
\begin{aligned}
& \text { (3) } \mathrm{CO}_{2} \rightarrow C_{(D)}+\mathrm{O}_{2} \quad \Delta H=396 \mathrm{~kJ} \\
& \left.(1)+(3) \Rightarrow(P P) \rightarrow C_{C D}\right)=396-394=2 \mathrm{~kJ}
\end{aligned}
$$

Driven Force.
<Energy Spread
Matter Spread
Entropy
Measure of disorder on randomness
Disorder 1 Entropy \downarrow
Second Law of thermodynamics: The entropy of the universe b A wars increased.

