
CS545 Problem Set 1
Problem 1.a

Assume are two arbitrary column vectors with size such that: ,
, then, will be equal to:

vectorizing , and we can find its expanded equation is equivalent to the expanded form of :

Problem 1.b

Assume we have two arbitrary matrices with same order, assume each of them have dimension
, then, we can represent the trance of as:

Problem 1.c

According to the definition, the matrix will be semi-definite if and only if the real number is non-
negative for every nonzero real column vector .

Now, assume that where is a real matrix, and is an arbitrary vector with dimension
equal to the row number of . Then:

af://n2
af://n7
af://n10

by matrix multiplication property, we can change the grouping surrounding matrix multiplication, that is:

assume a matrix , by the property of transpose that the product of the transposes of two
matrices in reverse order is equal to the transpose of the product of them, that is , then:

which is equal to the square of the L2 norm for matrix , and it is a non-negative number. Therefore, we
can say:

that is is semi-definite.

Problem 2

let's define the event of the woman has breast cancer is , and get positive mammogram to be . From
the information given, we know:

what we need to calculated is , applied the Bayes' theorem,

we can notice that except , the rest terms are all given, so we need to solve for firstly, and
this term represent the probability of woman get positive mammogram.

then, plug-in all term into the Bayes' formula:

Problem 3.1.a

assume the input matrix is , define a column vector , then the mean

image can be expressed as:

Problem 3.1.b

assume the input matrix is , define a matrix with shape and equal to:

then, the mean value for top and bottom half for the images, let's called it , can be calculated by:

af://n21
af://n30
af://n33

where the represent the row vector of ones with length . We also need to define the mean
vector of to be , it can be obtained by:

the calculation above resulting to be a column vector with length , finally we can express the
covariance matrix:

Problem 3.2.a

assume the input matrix is , we first operate both and vec-transpose on it to reduce its
dimension to be 2.

after this this step, the input matrix will be a 2-dim matrix with size , noticed that each row
represent the same color, so we can easily find the mean vector of it with respect to its row. Let's call the
resulting vector :

the resulting matrix is a column vector with a length of , and it exhibits the pattern
. To align all the R, G, and B pixels into their respective columns, we can utilize the vec-transpose
operation. Let's call the resulting matrix :

 has the shape , the reason this makes sense is that we already know the exact number of R,
G, and B pixels is . Then, we need to find the mean vector for wrt its row, then, to transpose the
mean vector into the mean image matrix, simply do a vec-transpose:

Problem 3.2.b

Because we only need the mean of red channel, so we can first use the color mixing formula to keep the
read channel and set the other to be zero

the resulting vector is a column vector with size , we can do a vec-transpose to make each image
be in an unique column:

the matrix has the shape , for each column vector is an image, and the first
elements in each column are the values for red channel, and the rest are values for which are
already been set as zero in the first step. Then, we need to obtain the mean value of red channel among
the images, and convert it back to matrix by using vec-transpose:

af://n42
af://n51

the represent the column vector of ones with size , this operation resulting a matrix with three
column vectors, each represent the mean value for (column for are zeros). Because we only
need the red channel, we need to use a filter to remove the last two columns. After removing, do the vec-
transpose to convert it back to a matrix:

Problem 4

Given a matrix that represents our transformation, our objective is to deduce its dimensions and
establish the elements within it. Let's designate the resulting vector from our transformation as , which
represents the complex spectrogram coefficients vector. Given an input sound vector of size , the
number of frames can be deduced based on the given and :

Each frame encompasses frequency bins. These frequency bins then constitute our resulting
vector . The length of can thus be given as:

Based on the properties of matrix multiplication, this is also the number of rows in matrix .
Summarizing, matrix should be of size .

Now, let's discern the value of each entry in this matrix. To compute the complex spectrogram coefficient
for a segment , firstly, a Hann window is applied to mitigate spectral leakage:

The resulting data after applying the Hann window becomes:

The subsequent step is to apply the DFT:

Given and , the transformed data is:

To represent this process in matrix form and considering the hop size, let's define three functions:

For matrix with its element at the row and column represented as , the entry has to satisfy
the following conditions:

af://n60

To visualize the matrix , I I employed sample sounds of sizes and , utilizing and

Extra point

To generate a spectrogram via using the column vector we obtain from the previous question, we can
do a vec-transpose with order , and sum up the real and imaginary part, normalize the amplitude
by taken , then draw the heat map for the resulting matrix, I utilized Python for this process,
applying it to a recording of my voice. The resultant spectrogram is presented below:"

p.s. I'm uncertain about the appropriate handling of the amplitude. I derived it by summing the real and
imaginary parts, which I suspect might not be the optimal approach. Consequently, the resulting amplitude
appears excessively large before normalizing

af://n81

import tqdm

import matplotlib.pyplot as plt

import numpy as np

from pydub import AudioSegment

sample_size = 20000

DFT_size = 128

Hop_size = 64

DRAW_A = False

DRAW_SPECTROGRAM = True

SAMPLE_FILENAME = 'sample.m4a'

assert (DFT_size / 2 == Hop_size)

DFT function

def dft(n, k):

 return np.exp(-1j * (2 * np.pi * n * k / DFT_size))

Hann window function

def hann(k):

 return 0.5 * (1 - np.cos(2 * np.pi * k / (DFT_size - 1)))

down sampling, or computer will bomb

sample_raw = AudioSegment.from_file(SAMPLE_FILENAME).set_frame_rate(8000)

sample = np.array(sample_raw.get_array_of_samples())

N = min(sample_size, sample.shape[0])

sample = sample[:min(sample_size, N)]

print(f"sound has shape: {sample.shape[0]}, we use {N} datas as sample")

A = np.zeros((2 * N - DFT_size, N))

for i, row in enumerate(tqdm.tqdm(A)):

 q = Hop_size * (i // DFT_size)

 for j in range(row.shape[0]):

 if (j >= q) and (j <= (q + DFT_size)):

 # A_ij != 0

 row[j] = dft(n=j - q, k=i % DFT_size) * hann(j - q)

 # otherwise A_ij = 0

visualize A

if DRAW_A:

 plt.imshow(A.real)

 plt.colorbar()

 plt.title(f"matrix A (sample size: {sample_size})")

 plt.axis('off')

 plt.show()

draw spectrogram

if DRAW_SPECTROGRAM:

 spec_coefficient = A @ sample

 # keep partial of spec coefficient which can be | 64, add up real and imaginary

part, and normalize log10

 spec_coefficient = np.abs(spec_coefficient[:spec_coefficient.shape[0] // DFT_size *

DFT_size])

 spec_coefficient = spec_coefficient.reshape((DFT_size, -1))

 plt.imshow(np.log10(spec_coefficient), origin='lower', aspect='auto')

 plt.colorbar(label='Log Magnitude')

 plt.title(f"Spectrogram (DFT size: {DFT_size})")

 plt.xlabel('time frame')

 plt.ylabel('frequency bin')

 plt.show()

	Problem 1.a
	Problem 1.b
	Problem 1.c
	Problem 2
	Problem 3.1.a
	Problem 3.1.b
	Problem 3.2.a
	Problem 3.2.b
	Problem 4
	Extra point

