Data describing

mean: $\frac{1}{N} \sum_{i=1}^{N} x_i$

p27

- scaling: $mean(kx) = kmean(x)$
- translating: $mean(x+c) = mean(x)+c$
- $\sum_{i=1}^{N} (x mean(\lbrace x \rbrace)) = 0$
- sum of squared distances of data points to *mean* is minimized
- affect strongly by outlier

standard deviation: $std(\lbrace x \rbrace) = \sqrt{\frac{1}{N}\sum_{i=1}^{i=N}(x - mean(\lbrace x \rbrace))^2}$

p29

when std is small, most data tend to close to mean

$$
\bullet \ \ std(\{kx_i\}) = k \cdot std(\{s_i\})
$$

- scalable
- there are at most $\frac{1}{k^2}$ data points lying k or more standard deviations away from the mean.
- there must be at least one data item that is at least one standard deviation away from the mean
- referred as scale parameter

variance: $var(\{x\}) = \frac{1}{N}(\sum_{i=1}^{i=N}(x_i - mean(\{x\}))^2)$

p31

- translating
- $var(k) = 0$, where k is a constant
- $var({\{kx\}}) = k^2 var({x})$

median: another use of a mean, less affect by outlier

- scalable
- translating

interquartile range:

```
p34
```
The interquartile range of a dataset $\{x\}$ is $iqr(\{x\}) = percentile(\{x\}, 75) - percentile(\{x\}, 25)$

- estimate how spread the data is, regardless the affect by outlier
- $iqr(x + c) = iqr(x)$ \$
- $iqr(kx) = |k| \cdot iqr(x)$

graph

histogram:

p35

- bar chart vs histogram: bar char is for category while histogram for quantitative data
- uni/multi modal: unimodal has one peak, multimodal has many, bimodal has two
- skew: symmetric, left skew, right skew, left skew refer to its tail is long on left

box plot:

A box plot is a way to plot data that simplifies comparison

outlier: data item that are larger than $q_3 + 1.5(q_3 - q_1)$ or smaller than $q_1 - 1.5(q_3 - q_1)$ **whisker:** non-outlier data

standardized coordinate

p37

coordinate with normalized data

$$
\hat{x_i} = \frac{x_i - mean(\{x\})}{std(\{x\})}
$$

- mean of standard coordinate is equal to 0
- standard deviation is equal to 1
- for many kinds of data, histograms of these standard coordinates look the same, which is the **standard normal curve**, given by:

$$
y(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}
$$

data in standard coordinate is called the normal data

correlation:

$$
corr(\{(x,y)\})=\frac{\sum_i \hat{x_i}\hat{y_i}}{N}
$$

- range from -1 to 1, the larger (absolute value), the better predict
- sign represent positive/negative correlation
- 0 means no correlation,1 means $\hat{x_i} = \hat{y_i}$
- $corr({(x,y)}) = corr({y,x})$
- The value of the correlation coefficient is not changed by translating the data.
- Scaling the data can change the sign, but not the absolute value
- $corr({ax_i + b, cy_i + d}) = sign(a \cdot c)corr({x_i, y_i})$

predict:

p62

- 1. Transform the data set into standard coordinates
- 2. Compute the correlation r
- 3. predict $\hat{y_0} = r\hat{x_0}$
- 4. transform back into original coordinate
- Rule of Thumb: The predicted value of y goes up by r standard deviations when the value of x goes up by one standard deviation.
- root mean square error: $\sqrt{1-r^2}$

probability

p70

outcome: what we expect from the experiment, every run of the experiment produces exactly one of the set of possible outcomes

sample space: the set of all outcomes, which we usually write Ω

event: event is a set of outcomes, usually write as sets, for example, ε

- $P(\Omega)=1$
- $P(\emptyset) = 0$
- denote A_j as a set of disjoined event, that is $A_i \cap A_j = \emptyset$ where $i \neq j$, we have:

$$
P(\cap_i A_i) = \sum_i P(A_i)
$$

combination:

p74

regardless the order, number of outcome when select k from N

$$
\binom{N}{k} = \frac{N!}{k!(N-k)!}
$$

probability calculating:

$$
P(A) + P(A^c) = 1
$$

$$
P(A - B) = P(A) - P(A \cap B)
$$

$$
P(A \cup B) = P(A) + P(B) - P(A \cap B)
$$

application:

Worked example 3.14 (Dice) You flip two fair six-sided dice, and add the number of spots. What is the probability of getting a number divisible by 2, but not by 5?

Solution There is an interesting way to work the problem. Write \mathcal{D}_n for the event the number is divisible by *n*. Now $P(D_2) = 1/2$ (count the cases; or, more elegantly, notice that each die has the same number of odd and even faces, and work from there). Now $P(D_2 - D_5) = P(D_2) - P(D_2 \cap D_5)$. But $D_2 \cap D_5$ contains only three outcomes (6, 4, 5, 5 and 4, 6), so $P(D_2 - D_5) = 18/36 - 3/36 = 5/12$

Conditional probability

P84

the probability that B occurs given that A has definitely occurred. We write this as $P(B|A)$

$$
P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}
$$

•
$$
P(A) = P(A|B)P(B) + P(A|B^c)P(B^c)
$$

independent:

Two events A and B are independent if and only if $P(A \cap B) = P(A)P(B)$

In other form, if two events are independent, $P(A|B) = P(A)$ and $P(B|A) = P(B)$, or in simple put:

$$
P(A \cap B) = P(A)P(B)
$$

- pairwise independent: each pair in events list is independent. pairwise independent cannot illustrate independent.
- conditional independent: $P(A_1 \cap ... \cap A_n | B) = P(A_1 | B) ... P(A_n | B)$

Random variables

P103

Given a sample space, a set of events F , a probability function P , and a countable set of real numbers D, a discrete random variable is a function with domain Ω and range D.

probability distribution function: $P({X = x})$

cumulative distribution function: $P({X \leq x})$

join probability function: $P({X = x} \cap {Y = y}) = P(x, y)$

Bayes' Rule:

$$
P(x|y) = \frac{P(y|x)P(x)}{P(y)}
$$

independent random variable: $P(x, y) = p(x)p(y)$

probability density function

P107

Let $p(x)$ be a probability density function (often called a pdf or density) for a continuous random variable X . We interpret this function by thinking in terms of small intervals. Assume that dx is an infinitesimally small interval. Then: $p(x)dx = P$

- no negative
- $\int_{-\infty}^{\infty} p(x) dx = 1$

normalizing constant: $\frac{1}{\int_{-\infty}^{\infty} g(x) dx}$

Expected Values

P110

Given a discrete random variable X which takes values in the set D and which has probability distribution P , we define the expected value:

$$
\mathbb{E}[X] = \sum_{x \in D} x P(X=x) = \mathbb{E}_p[X]
$$

for the continuous random variable X which takes value in the set D , and which has probability distribution P , we define the expect value as:

$$
\mathbb{E}[X] = \int_{x \in D} x p(x) dx = \mathbb{E}_p[X]
$$

Assume we have a function f that maps a continuous random variable X into a set of numbers D_f . Then $f(X)$ is a continuous random variable, too, which we write F. The expected value of this random variable is:

$$
\mathbb{E}[f] = \int_{x \in D} f(x)p(x)dx = \text{the expectation of } f
$$

- $\mathbb{E}[0] = 0$
- for any constant k , $\mathbb{E}[kf] = k \mathbb{E}[f]$
- $\mathbb{E}[f+g] = \mathbb{E}[f] + \mathbb{E}[g]$
- expectation are linear
- the mean/expect value of random variable X is $\mathbb{E}[X]$

variance of random variable:

$$
var[X]=\mathbb{E}[(X-\mathbb{E}[X])^2]=\mathbb{E}[X^2]-(\mathbb{E}[X])^2
$$

- for constant k , $var[k] = 0$
- $var[kX] = k^2 var[X]$
- if X, Y are independent, then $var[X + Y] = var[X] + var[Y]$

covariance for expected value:

$$
cov(X,Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]
$$

- if X, Y are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- if X, Y are independent, then $cov(X, Y) = 0$
- $var[X] = cov(X, X)$
- $corr(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$
- $var(X Y) = var(X) + var(Y) 2cov(X, Y)$
- $var(X + Y) = var(X) + var(Y) + 2cov(X, Y)$

standard deviation of random variable:

$$
std(\{X\}) = \sqrt{var[X]}
$$

Markov's inequality:

P116

the probability of a random variable taking a particular value must fall off rather fast as that value moves away from the mean

$$
P(\{|X|\geq a\})\leq \frac{\mathbb{E}[|X|]}{a}
$$

Chebyshev's inequality:

• give us the weak law of large number

$$
P(\{|X-\mathbb{E}[X]|\geq k\sigma\})\leq \frac{1}{k^2}
$$

indicator function:

An indicator function for an event is a function that takes the value zero for values of x where the event does not occur, and one where the event occurs. For the event E , we write:

$$
\mathbb{I}_{\{\{|x|\}\leq a\}}(x) = \begin{cases} 1 & \text{if } -a < x < a \\ 0 & \text{otherwise} \end{cases}
$$

• $\mathbb{E}_P[\mathbb{I}_{\lvert \varepsilon \rvert}] = P(\varepsilon)$

Distribution

P131

discrete uniform distribution:

e.g. fair die, fair coin flip

A random variable has the discrete uniform distribution if it takes each of k values with the same probability $\frac{1}{k}$, and all other values with probability zero.

Bernoulli Random Variables:

e.g. biased coin toss

Bernoulli random variable takes the value 1 with probability p and 0 with probability $1-p$. This is a model for a coin toss, among other things

- \bullet mean = p
- variance = $p(1-p)$

The Geometric Distribution:

e.g. we flip this coin until the first head appears, the number of flip required to get one head

$$
P(\{X = n\}) = (1 - p)^{n-1}p
$$

- $mean = \frac{1}{p}$
- variance $=\frac{1-p}{p^2}$

The Binomial Probability Distribution:

e.g. toss a coin, the probability that it comes up head h times in N flips

$$
P_b(h;N,p) = \binom{N}{h} p_h (1-p)^{N-h}
$$

- as long as $0 \leq h \leq N$, in other case, the probability is equal to 0
- \bullet mean = Np
- variance = $Np(1-p)$
- different with Bernoulli: binomial represents the number of successes in n successive independent trials of a Bernoulli experiment

Multinomial Probabilities:

e.g. toss a die with k sides, the probability that it comes up a outcome in N flips

Definition 5.5 (Multinomial Distribution) Perform N independent repetitions of an experiment with k possible outcomes. The *i*'th such outcome has probability p_i . The probability of observing outcome 1 n_1 times, outcome 2 n_2 times, etc. (where $n_1 + n_2 + n_3 + ... + n_k = N$) is

$$
P_m(n_1,\ldots,n_k;N,p_1,\ldots,p_k)=\frac{N!}{n_1!n_2!\ldots n_k!}p_1^{n_1}p_2^{n_2}\ldots p_k^{n_k}.
$$

The Poisson distribution:

e.g. the marketing phone calls you receive during the day time

$$
P(\{X=k\})=\frac{\lambda^k e^{-\lambda}}{k!}
$$

where $\lambda > 0$ is a parameter often known as the intensity of the distribution

- $mean = \lambda$
- variance $=\lambda$