
CS 412 Intro. to Data Mining
Chapter 3. Data Warehousing and On-line Analytical Processing

Hanghang Tong, Computer Science, Univ. I l l inois at Urbana -Champaign, 2023

1

2

Chapter 3: Data Warehousing and On-line Analytical Processing

❑ Data Warehouse: Basic Concepts

❑ Data Warehouse Modeling

❑ OLAP Operations

❑ Data Cube Computation: Concepts and Methods

❑ Summary

3

What is a Data Warehouse?

❑ Defined in many different ways, but not rigorously

❑ Support decision

❑ Maintained Separately

❑ Information processing

❑ “A data warehouse is a subject-oriented, integrated, time-variant, and
nonvolatile collection of data in support of management’s decision-making
process.”—W. H. Inmon

❑ Data warehousing:

❑ The process of constructing and using data warehouses

4

Data Warehouse—Subject-Oriented

❑ Help make decisions

❑ A simple and concise view (modeling and analysis)

❑ Not details (transaction processing)

❑ Organizing around major subjects, such as customer, product, sales

❑ Excluding data that are not useful in the decision support process

5

Data Warehouse—Integrated

❑ Integrating multiple, heterogeneous sources

❑ Ex. relational databases, flat files, on-line transaction records

❑ Consistency

❑ Data cleaning and data integration techniques are applied.

❑ Ex. Hotel price: differences on currency, tax, breakfast covered, and parking

❑ When data is moved to the warehouse, it is converted

6

Data Warehouse—Time Variant

Data Warehouse Operational Database

Long time horizon (e.g., past 5-10 years) current value data

Contains an element of time, explicitly or
implicitly

data may or may not contain “time
element”

7

Data Warehouse—Nonvolatile

❑ Independence – A physically separate store

❑ Static – No data management (updates, transaction processing, recovery, and

concurrency control mechanisms)

❑ Requires only two operations in data accessing:

❑ initial loading of data and access of data

9

OLTP vs. OLAP
	 OLTP	 OLAP	

users	 clerk,	IT	professional	 knowledge	worker	

function	 day	to	day	operations	 decision	support	

DB	design	 application-oriented	 subject-oriented	

data	 current,	up-to-date	
detailed,	flat	relational	
isolated	

historical,		
summarized,	
multidimensional	
integrated,	consolidated	

usage	 repetitive	 ad-hoc	

access	 read/write	
index/hash	on	prim.	key	

lots	of	scans	

unit	of	work	 short,	simple	
transaction	

complex	query	

#	records	accessed	tens	 millions	

#users	 thousands	 hundreds	

DB	size	 100MB-GB	 100GB-TB	

metric	 transaction	throughput	 query	throughput,	response	

❑ OLTP: Online transactional

processing

❑ DBMS operations

❑ Query and transactional

processing

❑ OLAP: Online analytical

processing

❑ Data warehouse operations

❑ Drilling, slicing, dicing, etc.

10

❑ Top Tier: Front-End Tools

❑ Middle Tier: OLAP Server

❑ Bottom Tier: Data

Warehouse Server

❑ Data

Data Warehouse:
A Multi-Tiered
Architecture

11

Three Data Warehouse Models

❑ Enterprise warehouse - Specially designed for the
entire organization

❑ Data Mart

❑ Specific set of subjects, selected groups of users

❑ Independent vs. dependent (directly from
warehouse) data mart

❑ Virtual warehouse

❑ A set of views over operational databases

❑ Only some of the possible summary views may be
materialized

https://www.guru99.com/data-warehouse-vs-data-mart.html

12

Extraction, Transformation, and Loading (ETL)
❑ Data extraction

❑ get data from multiple, heterogeneous, and external sources

❑ Data cleaning

❑ detect errors in the data and rectify them when possible

❑ Data transformation

❑ convert data from legacy or host format to warehouse format

❑ Load

❑ sort, summarize, consolidate, compute views, check integrity, and build indicies
and partitions

❑ Refresh

❑ propagate the updates from the data sources to the warehouse

13

Metadata Repository
❑ Meta data is data about data. It stores:

❑ Description of structure (schema, etc.)

❑ Operational meta-data

❑ data lineage (history of migrated data and transformation path), currency of
data (active, archived, or purged), monitoring information (warehouse usage
statistics, error reports, audit trails)

❑ The algorithms used for summarization

❑ The mapping from operational environment to the data warehouse

❑ Data related to system performance

❑ warehouse schema, view and derived data definitions

❑ Business data

❑ business terms and definitions, ownership of data, charging policies

14

From Data Warehouse to Data Lake
❑ Data lake: a single repository of all enterprise data in the natural format

❑ Relational data, semi-structured data (e.g., XML, JSON), unstructured
data (e.g., emails, Pdf files) and binary data (e.g., images, videos, audio)

❑ Data lake vs. data warehouse

❑ Data Warehouse: top-down, structured and centralized

❑ Data Lake: bottom-up, quick prototyping and democratic

❑ Data storage in data lake

❑ Mandatory layers:

❑ Optional layers

• raw data, cleansed data,
and application data

• standardized data layer &
sandbox data layer

15

Chapter 3: Data Warehousing and On-line Analytical Processing

❑ Data Warehouse: Basic Concepts

❑ Data Warehouse Modeling

❑ OLAP Operations

❑ Data Cube Computation: Concepts and Methods

❑ Summary

16

From Tables and Spreadsheets to Data Cubes

❑ A data warehouse is based on a multidimensional data model which
views data in the form of a data cube

❑ Main function is to provide summarizations of the data

❑ E.g., summarize the units or dollars sold at a particular store over a
particular time period

❑ Can compute summarizations online (as they are requested)

❑ Can be very slow

❑ Better to pre-calculate some summarizations

17

Design of Data Warehouses
❑ Dimension tables, such as item (item_name, brand, type), or time(day, week,

month, quarter, year)

❑ Fact table contains measures (such as dollars_sold) and keys to each of the related
dimension tables

❑ Different schema exist

❑ Star

❑ Snowflake

❑ Fact constellation

18

Conceptual Modeling of Data Warehouses

❑ Modeling data warehouses: dimensions & measures

❑ Star schema

❑ Snowflake schema

❑ Fact constellations

19

Star Schema: An Example

time_key

day

day_of_the_week

month

quarter

year

time

location_key

street

city

state_or_province

country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key

item_name

brand

type

supplier_type

item

branch_key

branch_name

branch_type

branch

A fact table in the middle connected to a set of dimension tables

20

Snowflake Schema: An Example

time_key

day

day_of_the_week

month

quarter

year

time

location_key

street

city_key

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key

item_name

brand

type

supplier_key

item

branch_key

branch_name

branch_type

branch

supplier_key

supplier_type

supplier

city_key

city

state_or_province

country

city

A refinement of star
schema where some
dimensional hierarchy
is normalized into a
set of smaller
dimension tables,
forming a
shape similar to
snowflake

21

Fact Constellation: An Example

time_key

day

day_of_the_week

month

quarter

year

time

location_key

street

city

province_or_state

country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key

item_name

brand

type

supplier_type

item

branch_key

branch_name

branch_type

branch

Shipping Fact Table

time_key

item_key

shipper_key

from_location

to_location

dollars_cost

units_shipped

shipper_key

shipper_name

location_key

shipper_type

shipper

Multiple fact tables
share dimension
tables, viewed as
a collection of stars,
therefore called galaxy
schema or fact
constellation

22

Data Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplier

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D (base) cuboid

23

Data Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplier

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D (base) cuboid

Example:
Suppose we don’t care

about the supplier.
This 3-D cuboid gives a
summarization over all

suppliers.

24

Data Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplier

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D (base) cuboid

Example:
Suppose we don’t care

about the supplier.
This 3-D cuboid gives a
summarization over all

suppliers.

Total sales, regardless
of time, item, location,

or supplier.

25

Calculating Number of Cuboids

❑ Consider dimensions as binary numbers

❑ Example: 4 dimensions

❑ Each is either in the cuboid, or not in the cuboid

❑ (, , ,) choice of 0 or 1 for each element of vector

❑ Sum up for each position: 23 + 22 + 21 + 20 + 1 (0-d cuboid) = 24

❑ In general, 2d cuboids (d = number of dimensions)

26

A Concept Hierarchy for a Dimension (location)

all

Europe North_America

MexicoCanadaSpainGermany

Vancouver

M. WindL. Chan

...

......

... ...

...

all

region

office

country

TorontoFrankfurtcity

27

Chapter 3: Data Warehousing and On-line Analytical Processing

❑ Data Warehouse: Basic Concepts

❑ Data Warehouse Modeling

❑ OLAP Operations

❑ Data Cube Computation: Concepts and Methods

❑ Summary

28

Multidimensional Data

❑ Sales volume as a function of product, month, and region
P

ro
d
u
ct

Month

Dimensions: Product, Location, Time

Hierarchical summarization paths

Industry Region Year

Category Country Quarter

Product City Month Week

Office Day

29

A Sample Data Cube

Total annual sales

of TVs in U.S.A.
Date

C
o
u

n
tr

ysum

sum
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

U.S.A

Canada

Mexico

sum

30

1 Qtr

2 Qtr

3 Qtr

4 Qtr

P
ro

d
u

ct

Country

31

Cuboids Corresponding to the Cube

all

product date country

product,date product,country date, country

product, date, country

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D (base) cuboid

How can we play with the Cube?

32

Roll up & Drill down

Phone PC Watch earphone
Product(types)

Phone PC Watch earphone
Product(types)

Roll up

Drill down

Roll up (drill-up): summarize data
by climbing up hierarchy or by dimension
reduction

Drill down (roll down): reverse of roll-up
from higher level summary to lower level
summary or detailed data, or introducing
new dimensions

33

Dice and Slice

Chicago
New York

Toronto
Vancouver

Q1
Q2
Q3
Q4

Phone PC Watch earphone
Product(types)

Toronto
Vancouver

Q2
Q1

Vancouver

Q1
Q2
Q3
Q4

Phone PC Watch earphone
Product(types)

Phone PC
Product(types)

Slice for
(Location = "Vancouver")

Dice for
(Location = "Toronto" or "Vancouver")

and (Time = "Q2" or "Q1") and
(Product = "Phone" or "PC")

34

Other Typical OLAP Operations

❑ Pivot (rotate):

❑ reorient the cube, visualization, 3D to series of 2D planes

❑ Drill across:

❑ involving (across) more than one fact table

❑ Drill through:

❑ through the bottom level of the cube to its back-end relational tables
(using SQL)

35

Data Cube Measures: Three Categories
❑ Distributive: if the result derived by applying the function to n aggregate values is

the same as that derived by applying the function on all the data without
partitioning

❑ E.g., count(), sum(), min(), max()

❑ Algebraic: if it can be computed by an algebraic function with M arguments (where
M is a bounded integer), each of which is obtained by applying a distributive
aggregate function

❑ avg(x) = sum(x) / count(x)

❑ How about standard_deviation()

❑ Holistic: if there is no constant bound on the storage size needed to describe a
subaggregate.

❑ E.g., median(), mode(), rank()

36

Efficient Data Cube Computation
❑ If I have n dimensions, each with Li levels, how many

cuboids are needed to preprocess all?

❑ Calculating all cuboids is costly in computation and time.

❑ How to decide which cuboid be pre-calculated
(Materialization)?

❑ Based on size of data, sharing, access frequency, etc.

❑ Example: I know my users always search by Quarter,
so that cuboid should be pre-calculated.

❑ Example: If I pre-calculate days, I can use days as input
to Months (30 or 31 days), or weeks (7 days), etc.

)1
1
(+

=
=

n

i
i

LT

Why this formula?

Sector Location Time

Industry Region Year

Category Country Quarter

Product City Month Week

Office Day

37

Indexing OLAP Data

❑ Indexing

❑ Main purpose of indexing is to make the calculation faster/efficient

❑ Common Warehouse Index: Bitmap Index

❑ Benefits in Warehousing:

❑ Reduced response time for large classes of ad hoc queries.

❑ Reduced storage requirements compared to other indexing techniques.

❑ Dramatic performance gains even on hardware with a relatively small
number of CPUs or a small amount of memory.

https://docs.oracle.com/database/121/DWHSG/schemas.htm#DWHSG9041

38

Indexing OLAP Data: Bitmap Index
❑ Index on a particular column

❑ Each value in the column has a bit vector: bit-op is fast

❑ The length of the bit vector: # of records in the base table

❑ The i-th bit is set if the i-th row of the base table has the value for the indexed
column

❑ Not suitable for high cardinality domains. (WHY?)

❑ A recent bit compression technique, Word-Aligned Hybrid (WAH), makes it work for
high cardinality domain as well [Wu, et al. TODS’06]

Cust Region Type

C1 Asia Retail

C2 Europe Dealer

C3 Asia Dealer

C4 America Retail

C5 Europe Dealer

RecID Retail Dealer

1 1 0

2 0 1

3 0 1

4 1 0

5 0 1

RecIDAsia Europe America

1 1 0 0

2 0 1 0

3 1 0 0

4 0 0 1

5 0 1 0

Base table Index on Region Index on Type

39

Chapter 3: Data Warehousing and On-line Analytical Processing

❑ Data Warehouse: Basic Concepts

❑ Data Warehouse Modeling

❑ OLAP Operations

❑ Data Cube Computation: Concepts and Methods

❑ Summary

40

Data Cube: A Lattice of Cuboids

time,item

time,item,location

time, item, location, supplier

all

time item location supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D (base) cuboid

How many cuboids are there at each level?

41

Data Cube: A Lattice of Cuboids

❑ Base vs. aggregate cells

❑ Ancestor vs. descendant cells

❑ Parent vs. child cells

❑ (*,*,*,*)

❑ (*, milk, *, *)

❑ (*, milk, Urbana, *)

❑ (*, milk, Chicago, *)

❑ (9/15, milk, Urbana, *)

❑ (9/15, milk, Urbana, Dairy_land)

all

time,item

time,item,location

time, item, location, supplier

time item location
supplier

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,supplier

time,location,supplier

item,location,supplier

0-D (agg)

1-D (agg)

2-D (agg)

2-D (agg)

3-D (agg)

4-D (base)

42

Cube Materialization: Full Cube vs. Iceberg Cube
❑ Full cube vs. iceberg cube

❑ Compute only the cells whose measure satisfies the iceberg
condition

❑ Ex.: Show only those cells whose count is at least 100

❑ Only a small portion of cells may be “above the water’’ in a
sparse cube

iceberg
condition

compute cube sales_iceberg as
SELECT month, city, customer_group, COUNT(*)
FROM salesInfo
CUBE BY month, city, customer_group
HAVING count(*) >= min support

43

Why Iceberg Cube?

❑ No need to save nor show those cells whose value is below the
threshold (iceberg condition)

❑ Efficient methods may even avoid computing the un-needed,
intermediate cells

❑ Avoid explosive growth

44

Example
❑ Example: A cube with 100 dimensions

❑ Suppose it contains only 2 base cells: {(a1, a2, a3, …., a100), (a1, a2, b3, …, b100)}

❑ How many aggregate cells if “having count >= 1”?

❑ Answer: (2101 ─ 2) ─ 4 (Why?!)

45

Example
❑ Example: A cube with 100 dimensions

❑ Suppose it contains only 2 base cells: {(a1, a2, a3, …., a100), (a1, a2, b3, …, b100)}

❑ What about the iceberg cells, (i,e., with condition: “having count >= 2”)?

❑ Answer: 4 (Why?!)

46

Is Iceberg Cube Good Enough? Closed Cube & Cube Shell

❑ Let cube P have only 2 base cells: {(a1, a2, a3 . . . , a100):10, (a1, a2, b3, . . . , b100):10}

❑ How many cells will the iceberg cube contain if “having count(*) ≥ 10”?

❑ Answer: 2101 ─ 4 (still too big!)

❑ Closed cube:

❑ A cell c is closed if there exists no cell d, such that d is a descendant of c, and d has
the same measure value as c

❑ Ex. The same cube P has only 3 closed cells:

❑ {(a1, a2, *, …, *): 20, (a1, a2, a3 . . . , a100): 10, (a1, a2, b3, . . . , b100): 10}

❑ A closed cube is a cube consisting of only closed cells

❑ Cube Shell: The cuboids involving only a small # of dimensions, e.g., 2

❑ Idea: Only compute cube shells, other dimension combinations can be computed on
the fly

48

Roadmap for Efficient Computation
❑ General computation heuristics [1]

❑ Computing full/iceberg cubes: 3 methodologies

❑ Bottom-Up:

❑ Multi-Way array aggregation [2]

❑ Top-down:

❑ BUC [3]

❑ High-dimensional OLAP:

❑ A Shell-Fragment Approach [4]

❑ Computing alternative kinds of cubes:

❑ Partial cube, closed cube, approximate cube, ……

1. (Agarwal et al.’96)
2. (Zhao, Deshpande & Naughton,

SIGMOD’97)
3. (Beyer & Ramarkrishnan,

SIGMOD’99)
4. (Li, et al. VLDB’04)

49

Efficient Data Cube Computation: General Heuristics
❑ Sorting, hashing, and grouping operations are applied

❑ Share-sorts

❑ Share-partitions

S. Agarwal, R. Agrawal, P. M.
Deshpande, A. Gupta, J. F.
Naughton, R. Ramakrishnan, S.
Sarawagi. On the computation
of multidimensional aggregates.
VLDB’96

❑ Reuse

❑ Smallest-child: computing a cuboid from the smallest,
previously computed cuboid

❑ Cache-results: caching results of a cuboid from which other
cuboids are computed to reduce disk I/Os

❑ Amortize-scans: computing as many as possible cuboids at the
same time to amortize disk reads

all

product date country

prod,date prod,country

date, country

prod, date, country

50

Multi-Way Array Aggregation (MOLAP)

❑ How can I efficiently calculate all group-by cell

aggregations? Full cube computation

❑ Fundamental Concept: AB, AC, and BC can be computed

from ABC. A, B, and C can be computed from AB/AC/BC.

❑ Common Practice with limited memory: Do not load the

entire dimension (in multi-way array form) into memory

at once. Use Chunks:

❑ http://pages.cs.wisc.edu/~nil/764/DADS/38_zhao97array

based.pdf - Zhao et al. ‘97

http://pages.cs.wisc.edu/~nil/764/DADS/38_zhao97arraybased.pdf

51

Multi-Way Array Aggregation (MOLAP)

❑ Chunk is stored as(chunk_id, offset)

❑ Tells which cells in the chunk have data

❑ Goal: Read chunk only once in memory

❑ BC /AB only once

❑ Example: Student Record Data Warehouse

❑ count(A) > count (B) > count(C)

❑ What is best order to put the chunks in

order to calculate the aggregation?

A
a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

C

B

2 3 4

5

9

13

29
45

61

20
36

52

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

1

6 7 8

52

Cube Computation: Multi-Way Array Aggregation (MOLAP)
❑ Scan Order: 1 – 2 – 3 – 4 – 5 – 6 – …

❑ Goal: Fully compute chunk only once

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52
6 7 8

❑ While we scan through 1..4

❑ One row of AC plane is partially

computed

❑ One chunk of BC plane is fully

computed (write to file)

❑ One row in AB plane is partially

computed

❑ now scan through 5…8

53

Cube Computation: Multi-Way Array Aggregation (MOLAP)
❑ Scan Order: 1 – 2 – 3 – 4 – 5 – 6 – …

❑ Goal: Fully compute chunk only once

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52
6 7 8

❑ While we scan through 5…8

❑ Same row of AC plane is updated

❑ Another chunk of BC plane is

fully computed (reuse the same

place in memory)

❑ another row in AB plane is

partially computed

❑ Continue on 9…12

❑ Continue on 13…16

54

Cube Computation: Multi-Way Array Aggregation (MOLAP)
❑ Scan Order: 1 – 2 – 3 – 4 – 5 – 6 – …

❑ Goal: Fully compute chunk only once

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52
6 7 8

❑ While we scan through 13…16

❑ One row of AC plane is fully

computed (write to file)

❑ Another chunk of BC plane is

fully computed (reuse the same

place in memory)

❑ Whole AB plane is partially

computed

❑ Memory requirement:

❑ 4000 x 10 (AC) + 100 x 10 (BC) +

4000 x 400 (AB) = 1,641,000 units

55

Cube Computation: Multi-Way Array Aggregation (MOLAP)

❑ Dimension Order: 1 – 5 – 9 – 13 – 2 – 6 – …

a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC

❑ One column of BC plane is fully

computed (write to file)

❑ Another chunk of AC plane is

fully computed (reuse the same

place in memory)

❑ Whole AB plane is partially

computed

❑ Memory:

❑ 400 x 10 (BC) + 1000 x 10 (AC) +

4000 x 400 (AB)

❑ 1,614,000 units

6 7 8

56

Cube Computation: Multi-Way Array Aggregation (MOLAP)

❑ Dimension Order: 1 – 17 – … – 13 – 29 – 45 – 61 …

a1a0

c3
c2

c1
c0

b3

b2

b1

b0

a2 a3

1 2 3 4

5

9

13

29
45

61

20
36

52

Example:
A: 4000, B: 400, C: 40

Chunk:
1000 x 100 x 10

AC

AB

BC

❑ One row of AC plane

❑ One chunk of AB plane

❑ All chunks in BC plane

❑ Memory:

❑ 1000 x 40 (AC) + 1000 x 100 (AB)

+ 400 x 40 (BC)

❑ 156,000 units

❑ The best orderEntire BC
plane One column

of AC plane

One chunk of
AB plane

6 7 8

57

Cube Computation: Multi-Way Array Aggregation (MOLAP)

❑ Main Goal of Multi-Way: Reducing memory and I/O

❑ How?

❑ Keep the smallest plane in main memory

❑ Fetch and compute only one chunk at a time for the largest

plane

❑ The planes should be sorted and computed according to their

size in ascending order

❑ Suppose A>B>C>…

for a in A:

for b in B:

for c in C: …

58

Cube Computation: Multi-Way Array Aggregation (MOLAP)

❑ Pros and Cons of Multi-Way

❑ Pro: Efficient for computing the full cube for a small number of dimensions

❑ Con: Can not calculate iceberg cube.

❑ i.e: If there are a large number of dimensions, “top-down” computation and

iceberg cube computation methods (e.g., BUC) should be used

59

Cube Computation: Computing in Reverse Order

❑ Iceberg cube computation

❑ BUC (Beyer & Ramakrishnan, SIGMOD’99)

❑ Bottom-Up (cube) Computation

❑ “top-down” in our view since we put Apex cuboid
on the top!

❑ Divides dimensions into partitions and facilitates
iceberg pruning

❑ Prune if not satisfy min_sup

❑ If minsup = 1, compute full CUBE!

❑ No simultaneous aggregation

all

A B C

AC BC

ABC ABD ACD BCD

AD BD CD

D

ABCD

AB

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB

60

BUC: Partitioning and Aggregating
❑ Cannot fit in main memory

❑ Sort distinct values and partition to fit

❑ Aggregation when sorting

❑ Continue processing

❑ Iceberg cube

❑ If count of (a1, b1, *, *, *) < min_support

❑ No need to sort on C

61

MultiWay VS BUC

multiway BUC

Input format Multi-dimensional array Relational database

Good for Full cube Iceberg cube

Key idea Simultaneously Aggregation Partition and sort

Calculation
direction

1 all

2 A 10 B 14 C

7 AC 11 BC

4 ABC 6 ABD 8 ACD 12 BCD

9 AD 13 BD 15 CD

16 D

5 ABCD

3 AB

62

High-Dimensional OLAP?—The Curse of Dimensionality

❑ High-D OLAP Applications:

❑ E.g. bio-data analysis, statistical surveys

❑ None of the previous cubing method can
handle high dimensionality!

❑ Iceberg cube and compressed cubes: only
delay the inevitable explosion

❑ Full materialization: still significant
overhead in accessing results on disk

❑ A shell-fragment approach: X. Li, J. Han, and
H. Gonzalez, High-Dimensional OLAP: A
Minimal Cubing Approach, VLDB'04

A curse of dimensionality: A database of
600k tuples. Each dimension has
cardinality of 100 and zipf of 2.

63

Fast High-D OLAP with Minimal Cubing
❑ Observation: OLAP occurs only on a small subset of dimensions at a time

❑ Semi-Online Computational Model

❑ Partition the set of dimensions into shell fragments

❑ Compute data cubes for each shell fragment while retaining inverted indices

❑ Given the pre-computed fragment cubes, dynamically compute cube cells of
the high-dimensional data cube online

❑ Major idea: Tradeoff between the amount of pre-computation and the speed of
online computation

❑ Reducing computing high-dimensional cube into precomputing a set of lower
dimensional cubes

❑ Online re-construction of original high-dimensional space

❑ Lossless reduction

65

Computing a 5-D Cube with 2-Shell Fragments

❑ Example: Let the cube aggregation function be
count

❑ Divide the 5-D table into 2 shell fragments:

❑ (A, B, C) and (D, E)

❑ Build traditional invert index (1-D)

TID A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

Attribute
Value

TID List List
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

66

Shell Fragment Cubes: Ideas
❑ Generalize the 1-D inverted indices to multi-

dimensional ones in the data cube sense

❑ Compute all cuboids for data cubes ABC and DE while
retaining the inverted indices

❑ Ex. shell fragment cube ABC contains 7 cuboids:

❑ A, B, C; AB, AC, BC; ABC

❑ This completes the offline computation

Attribute
Value

TID List List
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

Cell Intersection TID List List Size

a1 b1 1 2 3 ∩ 1 4 5 1 1

a1 b2 1 2 3 ∩ 2 3 2 3 2

a2 b1 4 5 ∩ 1 4 5 4 5 2

a2 b2 4 5 ∩ 2 3 φ 0

tid count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30

❑ ID_Measure Table

❑ If measures other than
count are present, store in
ID_measure table separate
from the shell fragments

Shell-fragment AB

67

Shell Fragment Cubes: Size and Design

❑ Given a database of T tuples, D dimensions, and F

shell fragment size, the fragment cubes’ space

requirement is:

❑ For F < 5, the growth is sub-linear

❑ Fragment groupings can be arbitrary to allow for

maximum online performance

❑ Known common combinations (e.g.,<city, state>)

should be grouped together

❑ Shell fragment sizes can be adjusted for optimal

balance between offline and online computation

❑ Shell fragments do not have to be disjoint

Attribute
Value

TID List List
Size

a1 1 2 3 3

a2 4 5 2

b1 1 4 5 3

b2 2 3 2

c1 1 2 3 4 5 5

d1 1 3 4 5 4

d2 2 1

e1 1 2 2

e2 3 4 2

e3 5 1

Cell Intersection TID List List Size

a1 b1 1 2 3 ∩ 1 4 5 1 1

a1 b2 1 2 3 ∩ 2 3 2 3 2

a2 b1 4 5 ∩ 1 4 5 4 5 2

a2 b2 4 5 ∩ 2 3 φ 0

68

Online Query Computation with Shell-Fragments
❑ A query has the general form: <a1, a2, …, an: M>

❑ Each ai has 3 possible values

❑ Instantiated value– this is what we want to look at

❑ Inquire ? Function – want to analyze these dimensions

❑ Aggregate * function – don’t care about these dimensions

❑ Ex: Suppose we want to query student data for junior (year 3) students and
want to compare scores for different genders and ages, but don’t care about
what high school they attended.

❑ <3, ?, ?, *: count>

69

Online Query Computation with Shell-Fragments
❑ Method: Given the materialized fragment cubes, process a query as follows

❑ Divide the query into fragments, same as the shell-fragment

❑ Fetch the corresponding TID list for each fragment from the fragment cube

❑ Intersect the TID lists from each fragment to construct instantiated base table

❑ Compute the data cube using the base table with any cubing algorithm

Query:
<a2, b1, ?, *, ?: count()>

A B C D E

(a2, b1): {4, 5}

(c1): {1, 2, 3, 4, 5}

{(e1: {1, 2}), (e2: {3, 4}), (e3: {5})}

Intersect -> base cuboid:
(c1, e2): {4}
(c1, e3): {5}

Online

Cube

3 fragments:
<a2, b1>
<?>
<*, ?>

70

Chapter 3: Data Warehousing and On-line Analytical Processing

❑ Data Warehouse: Basic Concepts

❑ Data Warehouse Modeling

❑ OLAP Operations

❑ Data Cube Computation: Concepts and Methods

❑ Summary

71

Summary
❑ Data warehousing: A multi-dimensional model of a data warehouse

❑ Data Warehouse Modeling

❑ Data Cube: a multidimensional data model

❑ Star schema, snowflake schema, fact constellations

❑ OLAP operations: drilling, rolling, slicing, dicing and pivoting

❑ Data Cube Computation:

❑ Basic Concepts: cuboids; iceberg cube; closed cube and cube shell, OLAP servers

❑ Computation Methods: MultiWay Array Aggregation, BUC, High-Dimensional

OLAP with Shell-Fragments

72

References (I)
❑ S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan,

and S. Sarawagi. On the computation of multidimensional aggregates. VLDB’96

❑ D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data
warehouses. SIGMOD’97

❑ R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE’97

❑ S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.
ACM SIGMOD Record, 26:65-74, 1997

❑ J. Gray, et al. Data cube: A relational aggregation operator generalizing group-by,
cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.

❑ A. Gupta and I. S. Mumick. Materialized Views: Techniques, Implementations, and
Applications. MIT Press, 1999

❑ J. Han. Towards on-line analytical mining in large databases. SIGMOD Record, 1998

❑ V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently.
SIGMOD’96

73

References (II)
❑ C. Imhoff, N. Galemmo, and J. G. Geiger. Mastering Data Warehouse Design:

Relational and Dimensional Techniques. John Wiley, 2003

❑ W. H. Inmon. Building the Data Warehouse. John Wiley, 1996

❑ R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling. 2ed. John Wiley, 2002

❑ P. O'Neil and D. Quass. Improved query performance with variant indexes.
SIGMOD'97

❑ S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional
arrays. ICDE'94

❑ P. Valduriez. Join indices. ACM Trans. Database Systems, 12:218-246, 1987.

❑ J. Widom. Research problems in data warehousing. CIKM’95.

❑ K. Wu, E. Otoo, and A. Shoshani, Optimal Bitmap Indices with Efficient Compression,
ACM Trans. on Database Systems (TODS), 31(1), 2006, pp. 1-38.

74

References (III)
❑ S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi.

On the computation of multidimensional aggregates. VLDB’96
❑ K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg CUBEs.. SIGMOD’99
❑ J. Han, J. Pei, G. Dong, K. Wang. Efficient Computation of Iceberg Cubes With Complex Measures.

SIGMOD’01
❑ L. V. S. Lakshmanan, J. Pei, and J. Han, Quotient Cube: How to Summarize the Semantics of a Data

Cube, VLDB'02
❑ X. Li, J. Han, and H. Gonzalez, High-Dimensional OLAP: A Minimal Cubing Approach, VLDB'04

❑ X. Li, J. Han, Z. Yin, J.-G. Lee, Y. Sun, “Sampling Cube: A Framework for Statistical OLAP over Sampling
Data”, SIGMOD’08

❑ K. Ross and D. Srivastava. Fast computation of sparse datacubes. VLDB’97
❑ D. Xin, J. Han, X. Li, B. W. Wah, Star-Cubing: Computing Iceberg Cubes by Top-Down and Bottom-Up

Integration, VLDB'03
❑ Y. Zhao, P. M. Deshpande, and J. F. Naughton. An array-based algorithm for simultaneous

multidimensional aggregates. SIGMOD’97

❑ D. Burdick, P. Deshpande, T. S. Jayram, R. Ramakrishnan, and S. Vaithyanathan. OLAP over uncertain
and imprecise data. VLDB’05

75

References (IV)
❑ R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE’97

❑ B.-C. Chen, L. Chen, Y. Lin, and R. Ramakrishnan. Prediction cubes. VLDB’05

❑ B.-C. Chen, R. Ramakrishnan, J.W. Shavlik, and P. Tamma. Bellwether analysis: Predicting global
aggregates from local regions. VLDB’06

❑ Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, Multi-Dimensional Regression Analysis of Time-Series
Data Streams, VLDB'02

❑ R. Fagin, R. V. Guha, R. Kumar, J. Novak, D. Sivakumar, and A. Tomkins. Multi-structural databases.
PODS’05

❑ J. Han. Towards on-line analytical mining in large databases. SIGMOD Record, 27:97–107, 1998

❑ T. Imielinski, L. Khachiyan, and A. Abdulghani. Cubegrades: Generalizing association rules. Data Mining
& Knowledge Discovery, 6:219–258, 2002.

❑ R. Ramakrishnan and B.-C. Chen. Exploratory mining in cube space. Data Mining and Knowledge
Discovery, 15:29–54, 2007.

❑ K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple granularities. EDBT'98

❑ S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven exploration of OLAP data cubes. EDBT'98

❑ G. Sathe and S. Sarawagi. Intelligent Rollups in Multidimensional OLAP Data. VLDB'01

76 January 9, 2023 Data Mining: Concepts and Techniques
76

